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A description is given of two classes of spatial fluid and gas motions possessing large 
functional arbitrariness and characterized by the property of linearity of the main flow param 
eters over part of the spatial coordinates. The constructed classes of solutions permit tak- 
ing account of such properties of a continuous medium as heat and electrical conductivities 
for a gas, and viscosity and electrical conductivity for a fluid in the Boussinesq approxima- 
tion. The relation of the described flows to the theory of traveling waves of the rank of 
three-triple waves is investigated for an inviscid gas. Definite systems of equations de- 
scribing new types of triple vortex waves possessing functional arbitrariness are obtained 
as specifications of the original classes of flows. Series of exact solutions are construc- 

ted. 

i. Classes of solutions of nonstationary spatial equations of motion of an incompres- 
sible fluid and of gas dynamics when the velocity vector components are linear functions of 
all the spatial coordinates are well known and were studied in [i, 2] for an incompressible 
medium and in [3, 4] for a gas. In group terminology such flow classes are H-invariant solu- 
tions [5], they have found a number of meaningful interpretations [4]. The question of the 
existence of spatial fluid and gas flows with a linear dependence of the velocity vector com- 
ponents Uk(X l, x 2, x 3, t) on part of the spatial coordinates (one or two) is not trivial. 

The relationships 

u~ = la(x 1, t)x 2 ~ /h(x 1, t)xa ~ gk(zl, t) (k = t ,  2, 3) ( 1 . 1 )  

s h o u l d  be s a t i s f i e d  f o r  f l o w s  o f  c l a s s  I i n  f l o w s  o f  t h i s  k i n d  and 

uk = ]~(zl~ x:, t)x~ + gh(zl, x 2, t) (k = 1, 2, 3) ( 1 . 2 )  

f o r  f l o w s  o f  c l a s s  I I ,  where  Ek, f k ,  and gk a r e  f u n c t i o n s  t o  be d e t e r m i n e d .  

The e q u a t i o n s  o f  m o t i o n  o f  a medium a r e  u s u a l l y  s u c c e s s f u l l y  r e d u c e d  t o  a fo rm when e a c h  
componen t  c o n t a i n s  a p o l y n o m i a l  n o n l i n e a r i t y  o f  t h e  unknown f u n c t i o n s  n o t  h i g h e r  t h a n  t h e  
q u a d r a t i c .  A p p r o p r i a t e  t h e r m o d y n a m i c  f u n c t i o n s  a r e  a l s o  r e p r e s e n t e d  by e x p r e s s i o n s  o f  t h e  
t y p e  ( 1 . 1 )  and ( 1 . 2 )  ( s o m e t i m e s  t h e y  can  c o n t a i n  componen t s  q u a d r a t i c  i n  x 2 and x 3 a l s o ) .  

A f t e r  s u b s t i t u t i o n  o f  r e p r e s e n t a t i o n s  o f  t h e  t y p e  ( 1 . 1 )  and ( 1 . 2 )  i n t o  such  a s y s t e m  
o f  e q u a t i o n s  p o l y n o m i a l  e x p r e s s i o n s  in  t h e  v a r i a b l e s  x2,  x3 ,  o r  x 3 w i t h  c o e f f i c i e n t s  c o n t a i n -  
ing  d i f f e r e n t i a l  a g g r e g a t e s  o f  Ek, f k ,  and gk a r e  o b t a i n e d  f o r  a l l  t h e  unknown f u n c t i o n s .  
E q u a t i n g  a l l  t h e s e  c o e f f i c i e n t s  t o  z e r o ,  we o b t a i n  a s t r o n g l y  o v e r d e f i n e d  s y s t e m  o f  m p a r t i a l  
d i f f e r e n t i a l  e q u a t i o n s  f o r  n unknown f u n c t i o n s  o f  Ek, f k ,  and gk and a n a l o g o u s  c o e f f i c i e n t s  
e n t e r i n g  in  t h e  t h e r m o d y n a m i c  f u n c t i o n s  (m > n ) .  

h g e n e r a l  a n a l y s i s  o f  t h e  c o m p a t i b i l i t y  o f  such  s y s t e m s  i s  q u i t e  awkward and complex .  
I t s  e x e c u t i o n  and t h e  d e t e r m i n a t i o n  o f  t h e  a r b i t r a r i n e s s  in  t h e  s o l u t i o n s  h a v e  n o t  been  s u c -  
c e s s f u l  e x c e p t  in  s e v e r a l  p a r t i c u l a r  c a s e s .  However ,  i t  t u r n s  o u t  t o  be p o s s i b l e  t o  i n d i c a t e  
s i m p l e  s u f f i c i e n t  c o m p a t i b i l i t y  c o n d i t i o n s  f o r  t h e  s y s t e m s  o b t a i n e d  [ 5 - 8 ]  f o r  a number  o f  
c a s e s  w i t h  t h e  a b o v e - m e n t i o n e d  p r o p e r t i e s  o f  t h e  medium t a k e n  i n t o  a c c o u n t .  The d e f i n i t e  
s y s t e m s  o f  ~ e q u a t i o n s  c o n s t r u c t e d  h e r e  (E i s  t h e  number o f  e q u a t i o n s ,  e x a m p l e s  w i l l  be  p r e -  
s e n t e d  be low f o r  an i n v i s c i d  g a s )  p o s s e s s  b r o a d  f u n c t i o n a l  a r b i t r a r i n e s s .  A l t h o u g h  t h e s e  
s y s t e m s  h a v e  s t i l l  been  i n v e s t i g a t e d  p e r f e c t l y  i n a d e q u a t e l y ,  t h e y  h a v e  a l r e a d y  found  a num- 
b e r  o f  a p p l i c a t i o n s  in  t h e  s o l u t i o n  o f  s p e c i f i c  g a s  dynamic  p r o b l e m s  [ 9 - 1 1 ] ,  p a r t i c u l a r l y  in  
t h e  i n v e s t i g a t i o n  o f  t h e  dynamics  o f  r o t a t i n g  v o r t i c a l  ga s  f l o w s ,  and a l s o  p e r m i t t e d  t h e  con -  
s t r u c t i o n  of classes of exact solutions~ 
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TABLE 1 

Motion class 

I m 
( t . t )  n 

II n 
(1.2) l 

Inviscldgas 
- - heat |electri- 
ideal conduct~cal con- 

ing ~uctin~ 

24 46 67 
t2 i5 24 

8 9 i i  

i2 i9  30 

V i s c o u s  f l u i d  

Boussinesq 
approxima. 

27 
i8 
1 i  

t4 
l l  

7 

taking elec. 
conductivity 
into account 

48 
27 

13; 5 

25 
t7 

8 ; 8  

Numerical values of m, n, and s for several fundamental types of media are presented 
in Table i. Let us note that the number s agrees with the number of arbitrary functions of 
one or two arguments on which the appropriate class of motions depends if all the equations 
of the system obtained are of first order. Two different modifications of definite systems 
occur for an electrically conductive viscous fluid in the Boussinesq approximation. 

The following motion properties are common for all the cases considered: vorticity, 
nonisoenergeticity, degeneracyin the general case of the velocity hodograph. The group nature 
of such solutions is as yet unclear. The structure of the obtained systems of definite equa- 
tions describing the motion classes I and II is similar to the structure of the original fluid 
or gasmotion equations when the dimensionality of the space of independent variables dimin- 
ishes by one, but mass forces dependent nonlinearly on the unknown functions enter into the 
right sides of the system obtained. Let us note that, in the most general case of viscous 
compressible gas flows, sufficient conditions for compatibility resulting in nontrivial de- 
finite systems describing meaningful motion classes have still not beenobtained successfully. 

2. Let us examine the question of the relation of the motion classes I and II to the 
traveling wave theory. At this time traveling wave theory has obtained broad development 
for the equations of gas dynamics. The most complete survey of available results is contained 
in [12]. Traveling waves are here understood to be a class of solutions of the equations 
of gas dynamics characterized by the fact that a domain of lower dimensionality r (r = i, 2, 
3) in the hodograph space for the velocities u l, u 2, u 3 corresponds to the four-dimensional 
domain of the original physical space x I, x 2, x B, t for them. The quantity r is called the 
rank of the wave. 

In practice, the case r = i, the s0-called simple waves, has been studied completely. 
For r = 2 (double waves) gas dynamic flows have been studied most fully under the assumption 
of stream potentiality, as have also been double waves with rectilinear generatrices that 
are characterized by the fact that the fundamental gas dynamic parameters retain a constant 
value along a certain set of lines in the original physical space. Governing equations are 
obtained for these types of double waves and a functional arbitrariness existing in the solu- 
tions is established. Recently, a sufficiently complete classification of double waves of 
a general type has been given for two-dimensional plane-parallel nonstationary flows [13]. 
As regards the triple waves (r = 3), their regular description (by using definite systems 
of differential equations) is absent even for potential flows. Only individual classes of 
exact solutions of the potential triple wave type [12] (although sufficiently broad possess- 
ing functional arbitrariness) and one particular class of triple vortical waves [6] have been 

constructed. 

The difficulties in studying waves of ranks two and three that are partially invariant 
solutions from the group viewpoint [14] are associated with the necessity to investigate com- 
plex and awkward overdefined systems of partial differential equations. Despite the avail- 
able general approaches to the solution of such problems (the Caftan algorithm and its modi- 
fications), their specific realization is associated with large analytic calculations and 
even by using specialized programs to perform analytic calculations on electronic computers 
did not result in success, particularly in the investigation of the compatibility of systems 
of potential triple wave equations. In fact, each serious advance in the theory of multiple 
traveling waves required a specialized analytical study in appropriate spaces of dependent 
and independent variables. 
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The purpose of the following sections is to describe new classes of vortical triple waves 
that occur as separate specializations of more degenerate gas dynamic flows of classes I and 
II (with a nondegenerate velocity hodograph) examined in Sec. i. Narrowing these motion 
classes when a condition of degeneracy of the velocity hodograph is imposed in addition, re- 
sults as before in new overdefined systems of equations. Nevertheless, although it is quite 
difficult to perform a general analysis of compatibility, sufficient conditions can be indi- 
cated when the obtained overdefined systems reduce to defined systems and, therefore, new 
descriptions can be found for vortical traveling waves of rank three with broad functional 
arbitrariness. 

3. Let us consider traveling waves in the class of flows with the linearity property 
in two space coordinates. We write the system of gas dynamics equations for the functions 
u (the velocity vector), Q = py-i (p is the density), W (the entropy function, the equation 
of state has the form p = Wp$, p is the pressure, y the adiabatic index) in the form 

au 
+ (uv) u + Qgrad W + .,JLT- W grad Q = O; ( 3 . 1 )  y/- 

aQ 
o-Y + (u grad Q) + (y - t) Q div u = O; 

ow 
o-7 + (u grad W) = O. 

( 3 . 2 )  

(3 .3 )  

Solutions of the system (1.1)-(1.3) are constructed in [6] in the form 

uh = lh(x.  t)x~ +/h(x. t)Xa + gh(x.  t) (k = 1, 2, 3), 
Q = l(xl, t)x~ +/(xl, t)xa + g(xl, t), 
W = L(Xl, t)x~ 2C F(x,, t)za + G(xl, t). 

(3.4) 

If we set 

t , = f 1 = l = f = L = F = O  , 

in  ( 3 . 4 ) ,  t h e n  t h e  r ema in ing  n i n e  unknown f u n c t i o n s  s 
s a t i s f y  t h e  f o l l o w i n g  sys t em of  n i n e  e q u a t i o n s :  

O1 i 01 i 
0-7 + gl  az---~ + lfl~ + l d i  = O, 

e--[ + gl  Oz--- 1 + /2 Z' + /a/ '  = O, 

ag i ag i 
O"-"t + gl  Oxq + g2~i + g a f i  : O, 

Og 1 _ Og 1 aG w+ r163 a l  =0;  

OG OG 

0-7.+ gl -~] = O. 

As is known, that solution of the system of equations 
of the Jacobi matrix A for Uk, Q, and W equals r is called 
this case the matrix A has the form 

0g! 
l o~--~ 0 0 

a/2 ag~ Z2 /2 al2 I~O~l X~ -i- -g~xl X3 + -g-~l -~-[ x2 -t- 

A ---~ }013 ~ Og3 Ol.~ [ a~-~x~ + . x ~ + ~  z~ /~ ~ +  
Og 

o o 

oa  0 0 
( Oxl 

(3.5) 

s f2, f3, gl, g2, g3~ g, and G 

i = 2, 3, ( 3 . 6 )  

i = 2 , 3 ;  (3.7) 

i = 2 , 3 ;  (3.8) 

(3.9) 

= 0 ;  (3.io) 

(3.1!) 

(3.1)-(3,3) for which the rank 
a traveling wave of rank r. In 

ag I 

at 

og 
ot 
oa 
Ot 
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It is clear that if s - s ~ 0 and the functions gl and g or g and G are functionally 
independent, then r = 4 and (3.4) generally define flows of general type. 

Let us first examine the case when the hodograph for the flows (3.4) is degenerate and 

z = 12/1 z =/2~3. (3 .12)  

Then i f  (s s ~ (0, 0) ,  and g and gz are  f u n c t i o n a l l y  independent ,  r = 3 and the  t r i p l e  
wave case is realized. 

Combining linear combinations from the pairs of relationships (3.6) and (3.7), with the 
coefficients s and -s f3 and -f=, respectively, we have 

l al~ Ots (l  012 - -  l alz) 

(3 .13)  

Both equations of (3.13) reduce by using (3.12) to one 

Oz/Ot 4- g~OzlOx~ = O. 

There fo re ,  j u s t  two equa t ions  can be kept  in p lace  of  (3 .6)  and (3 .7)  

Ol2/Ot + gxOl2/Oxl + 12 + lj~ = 0; 

(3.14) 

(3.15) 

&~/at + gtw2/azt +/~(l~ + 18) = o. (3.16) 
By setting s = s -z (3.12) in this case, we obtain a definite system of eight equations 
(3.15), (3.16), (3.14), (3.8)-(3.11) for the functions s f2, f3, gl, g2, gs, g, and G that 
describes the class of vortical nonstationary nonisentropic spatial triple waves that possess 
arbitrariness in eight functions of one independent argument, The subsystem of equations 
(3.14)-(3.16), (3.9)-(3.11) is here independent. After its solution the functions g2 and 
g3 are found from the system of two linear equations (3.8). 

Now, let s - s ~ 0. Since the fourth-order determinants should vanish, we obtain 
the functional dependences 

g = F(gt), G = G(g). (3.17)  

By virtue of (3.17) the equation of state should correspond to a barotropic gas and, later, 
for simplicity, we set G = G o = const, i.e., consider an isentropic case. Then (3.9) 
acquires the form 

agt + ~ (g l) Ogt 0-7 ~ = 0 ,  e ( g l ) =  g l +  GoF', (3 .18)  

and its general integral can be represented in the form 

xt = ~(gOt -~ F(gl), (3.19) 

where F is an arbitrary function. As already noted, after the functions s s f2, and f3 
have been determined, the functions g2 and g3 are also found for this case by integrating 
the linear system (3.8). 

Therefore, the situation reduces to analysis of the compatibility of a system of five 
equations for four functions s s f2, f3 in whose coefficients are two arbitrary functions 
F and F of one argument. Here (3.10) takes the form 

7 a0~-  (~'t + r ') - I ,  (3 .20)  12 +f3= -- 1 (7 I) ~ 

i.e., the function fs can be expressed in terms of s and the system (3.6), (3.7) is subject 
to further analysis. Its complete analysis has not yet been successfully performed. Let 
us examine a particular case and let us show that the set of solutions of this overdefined 
system is not empty and possesses arbitrariness in at least several arbitrary constants. Tak- 
ing (3.8) into account the class of triple waves with arbitrariness in two functions of a 
single argument will thereby be constructed. 
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Let us assume that the following dependences hold: 

(0 = a = const, ~ = xl --  at, l h = Lh(~), ( 3 . 2 1 )  

1~ = F~(~), gl = Vl(~) + a, g = H(~).  

Then (3.6), (3.7), (3.9), and (3.10) reduce to the form 

r r 

G,L 2 + L ~ + L a F  ~ = 0 ,  G,L 3 + L  3(L 2+F3)- - -0 ,  

G~F'2 + F 2 (L 2 -5 F~) : O, G1F' a -5 F2L 3 + F~ ---- 0, ( 3 . 2 2 )  

J- G~ -5 aoH : C, : const, G,H' -5 (~ --  t) H (G~ + L 2 + F~)=0 .  
2 

But  s u c h  a s y s t e m  o f  o r d i n a r y  e q u a t i o n s  ( 3 . 2 2 )  was a l r e a d y  c o n s i d e r e d  i n  [ 9 ]  when s t u d y -  
i n g  stationary flows (6 plays the part of the stationary coordinate x3') and was integrated 
in quadratures. Its solution depends on six arbitrary constants. 

The system of equations (3.8) for the functions g2 and g3 has the form 

- - o r  a) ~ + g2L 2 + g3F2 = O, 

Og~ + (G x + a) Og3 ( 3 . 2 3 )  
o ~  ~ -5 g2L3 -5 gaFa : 0. 

1 

Let us go over to new independent variables t', r by setting 

~ : x ~ - - a t ,  t ' =  ~ d~(~) - - t .  

Then (3.23) reduces to the form 

(3.24) 

0 z _  
G, (~) ~ + g~L~ (~) + g~F 2 (~) : O, 

Og:~ 
G, (~) ~ + g,,La (~) + g3Fa (~) = O. 

(3.25) 

Eliminating ga from (3.25), we obtain the following actually ordinary linear differential 
equation with variable $ for g2 by using (3.22): 

2 a~g~ 2F3) og2 G ~ - - ~ f - +  G~ (G; + 2L2 + ~ + 2g2(L2F3-- L~F2) = O. ( 3 . 2 6 )  

The g e n e r a l  s o l u t i o n  o f  ( 3 . 2 6 )  c a n  be r e p r e s e n t e d  a s  g2 = A l ( t ' ) r  + A 2 ( t ' ) r 1 6 2  whe re  
~l and r are fundamental solutions of (3.26) while A I and A 2 are arbitrary functions of t'. 

Therefore, a class of solutions of the type of nonstationary isentropic vortical spatial 
triple waves has been constructed with arbitrariness in two functions of a single argument. 
The functions 32 and 33 are analogous to known "arrangement" functions in the theory of flows 
with a degenerate hodograph [12]. 

4. Let us consider the linear solutions in one space coordinate. 

Solutions of the system (3.1)-(3.3) of the following form are constructed in [6]: 

uk = /k(x 1, x 2, t)x3 + gh(x 1, x 2, t) (k = 1, 2, 3), 

Q = / ( x .  x.,, t)x~ § g(x.  x.~, t), 
w = F(x. ,  x2, t)x~ + C(x~, x~, t). 

(4.1) 

If 

/I =/2 = / : F : O, (4.2) 

in (4.1), then the remaining six unknown functions gi, g2, g3, f3, g, and G will satisfy a 
system of six equations [v = (fl, f2)]: 
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at__~ § (v grad/a  ) + / ~  = 0, 
Ot 

o v  
ot + (vV) v + g g r a d G  + G g r a d g  = 0, 

og~ + (v grad g~) + ]3g3 = 0, 
0t 

0~ 
o--7" + (v grad g) + (~ - -  1) g(/~ + div v) --- 0, 

OG + (v grada) = 0. 
0t 

( 4 . 3 )  

In this case the matrix is 

A =  

~ g_d @__! 0 @._-it 
Ox z Ox 2 Ot 

6 g___~2 O g___~2 0 O g__! 
Ox 1 Ox~ Ot 

_ 0/3 Og~ _ 0/3 Og3 Of 3 
�9 

ag a~ 0 ag.y_ 

aft! aa 0 OG 
Ox I ox"Z~ O---i- ) 

Let r < 4 and f3 ~ 0 (if f3 = 0 then a slightly interesting case is obtained where all 
the gas dynamic quantities are independent of x3). Then we find the following functional de- 
pendences at once from the form of A: 

g = M ( g , ,  g=), C = N(gl, ~ ) .  ( 4 . 4 )  

Analysis of the compatibility of the overdefined system of equations obtained from (4.3) and 
(4.4) is quite complex although a number of intermediate integrals can be obtained suffi- 
ciently easily. Despite the fact that the class of solutions of the form (4.1) is more gen- 
eral than the solutions (3.4), nevertheless, solutions of the form (3.4) are already not in- 
cluded because of the additional constraints (4.2) that narrow this class. The question of 
the meaningfulness of the imbedding of flows of the traveling-wave type in the class (4.1) 
and (4.2) remains open in the general case. For instance, let us present an example showing 
tha t the clas>s of triple waves of the type (4.1) and (4.2) is not empty and possesses arbi- 
trariness to a lesser degree in five functions of a single argument and one function of two 
independent variables. 

Let us consider that the following functional relationships are valid in the system(4.3): 

gh = Ch(~,  ~ )  + ak, ~ = xh - - a ~ t  (k = t ,  2), 
g = M(~,, ~2), G = N(~,, ~=), /a = F(~,, ~) .  ( 4 . 5 )  

Then five equations of system (4.3) (except the equation for gs) for the five functions GI, 
G 2, M, N, and F can be written in the form 

G ~ oak oN __y__r ar 0M = 0 (k  = t ,  2), 

OF OF FZ a ~ +  c ~ +  = 0 ,  

=0. 

After having solved this system that contains arbitrariness in five functions of one 
variable, a linear first-order equation remains for the determination of g3: 

@g3 Og 3 _6~  
o--i" + (G, + al) ~ -  + (G2 + a~) T ~  2 + Fgn = O. 

Therefore, a class of triple waves with the above-mentioned arbitrariness has been con- 
structed (if G I and G 2 are functionally independent). 
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